博客
关于我
强化学习(2020智源大会)Topic推荐-AMiner
阅读量:130 次
发布时间:2019-02-27

本文共 401 字,大约阅读时间需要 1 分钟。

由清华大学计算机系研发,拥有我国完全自主知识产权。平台包含了超过2.3亿学术论文/专利和1.36亿学者的科技图谱,提供学者评价、专家发现、智能指派、学术地图等科技情报专业化服务。系统2006年上线,吸引了全球220个国家/地区1000多万独立IP访问,数据下载量230万次,年度访问量超过1100万,成为学术搜索和社会网络挖掘研究的重要数据和实验平台。

必读论文:

强化学习是机器学习中的一个领域,强调如何基于环境而行动,以取得最大化的预期利益。其灵感来源于心理学中的行为主义理论,即有机体如何在环境给予的奖励或惩罚的刺激下,逐步形成对刺激的预期,产生能获得最大利益的习惯性行为。本Topic收录了第二次智源大会-强化学习的主讲嘉宾的历史论文和一些其他学者的相关论文。

该论文集共收录50篇论文,最高引用数为3439,其中来自密歇根大学的叶杰平在该领域发表了15篇论文,在所有学者中最多。

论文集地址:

在这里插入图片描述

转载地址:http://gqwd.baihongyu.com/

你可能感兴趣的文章
NLP入门(六)pyltp的介绍与使用
查看>>
NLP学习笔记:使用 Python 进行NLTK
查看>>
NLP度量指标BELU真的完美么?
查看>>
NLP的不同研究领域和最新发展的概述
查看>>
NLP的神经网络训练的新模式
查看>>
NLP采用Bert进行简单文本情感分类
查看>>
NLP问答系统:使用 Deepset SQUAD 和 SQuAD v2 度量评估
查看>>
NLP项目:维基百科文章爬虫和分类【02】 - 语料库转换管道
查看>>